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Abstract—With the growing technological advancements in
the Internet and advanced functionalities in vehicular networks,
it becomes crucial to execute tasks quickly and efficiently.
However, the limited onboard computational capacity and vehicle
mobility make it challenging to accomplish latency-sensitive tasks
efficiently. Task offloading provides a promising solution to
overcome these challenges. Cloud data centers provide efficient
solutions, but returning the results to the vehicles takes longer
due to the large physical distance. Leveraging edge servers
to execute latency-sensitive tasks provides a fast, interactive
response and less transmission cost. However, in a dynamic
network, vehicles will be in constant motion with varying speeds,
resulting in frequent handoffs from one base station to another.
Our proposed work aims to select the optimal nodes to perform
binary offloading with minimum cost using the collaborative
vehicular network. We use a greedy-based offloading approach
to address these challenges and achieve better quality-of-service
and quality-of-experience in a dynamic environment to minimize
costs, delay reduction ratio, and satisfaction ratio. The proposed
work outperforms the baseline by 60.44%, 53.43% in reducing
total system cost, delay reduction ratio, and 36% improvement
in the satisfaction ratio compared to baseline algorithms.

Index Terms—Binary offloading, Mobility, Collaborative net-
works, Delay reduction ratio, Cost Minimization.

I. INTRODUCTION

Autonomous vehicles are rapidly growing with rich, ad-
vanced features that provide smarter, intelligent, and connected
vehicles to make reliable and safe driving decisions [1]. In
recent years, metropolitan cities have witnessed an increase
in the number of vehicles market size valued at USD 1,500.3
billion in 2022 and is projected to grow from USD 1,921.1
billion in 2023 to USD 13,632.4 billion by 2030, exhibiting
a compound annual growth rate of 32.3% during the forecast
period [2]. This has increased urbanization and technological
advancement in automotive solutions. Autonomous vehicles
comprise various in-built sensors, wireless communication
devices, and processing and storage capabilities to support
vehicular applications such as image-aided navigation, colli-
sion detection, and intelligent vehicle control [3] [4] [5]. The
onboard computation unit of the autonomous vehicle cannot
execute such complex tasks due to a lack of storage and
computation power. In such cases, the offloading technique
provides efficient and reliable solutions. Even though the
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cloud data centers are rich with computation and storage
capabilities, they have limitations concerning delay and extra
transmission costs that degrade the system performance [6].
To provide a better quality-of-service (QoS), the edge server
acts as a middle layer between the vehicle and the cloud,
reducing the latency and energy, thus increasing the battery
life of the vehicles [7]. These servers also provide faster
interactive responses [8]. In the case of full offloading, the
maximum delay is experienced when many tasks are offloaded
to distant servers. So, it is not recommended for latency-
sensitive applications like collision avoidance, where the re-
sponse must be sent in very short intervals [9]. In such
cases, binary offloading helps execute the task in the local
(vehicle) or remote (edge/cloud) [10]. Since binary offloading
splits the workload across local vehicles and edge service,
providing efficient resource utilization, reduced latency, and
low communication overhead [11].

In the case of vehicular networks, the offloading decisions
are adapted dynamically due to mobility patterns and location
information of vehicles. The optimal selection of edge servers
considering latency constraints helps in binary offloading with
dynamic decisions, which reduces the likelihood of offloading
to a distant server [12]. In some cases, tasks can be prioritized
based on the deadline and vehicle location so that processing
can be performed within the given timeline [13]. Therefore,
the vehicular network uses the Vehicle-to-infrastructure (V2I)
to efficiently make dynamic offloading decisions and allocate
computational resources to provide QoS to users [14]. In a
dynamic environment, wireless networks experience variable
conditions such as signal fading, interference, and conges-
tion [15]. Therefore, robust offloading mechanisms that can
adapt to unpredictable network conditions must be devel-
oped [16]. From this perspective, many researchers have
done significant work in optimizing latency, energy, resource
allocation, and revenue using heuristic, metaheuristics, and
exact approaches such as matching theory [17], genetic al-
gorithm (GA) [18], and convex optimization [19] etc. Gu et
al. formulated an energy-efficient cost minimization problem
considering the impact of mobility of vehicles using a two-
level optimization distributed algorithm [8]. In [20], Liu et
al. proposed an algorithm to increase the revenue for task
offloading using a Genetic Allocation Algorithm to reduce the



number of migrations due to the mobility of the vehicular
nodes. In another work, Raza et al. analyses the trade-off
between computation time and energy consumption using
the MACTER approach [21]. Luo et al. proposed a swarm
optimization-based computation offloading algorithm to obtain
the pareto-optimal solutions in minimizing the delay and cost
while performing task offloading in the vehicular network [22].
However, task dependency management, network instability,
overutilization of resources, and their scalability in large-scale
vehicular networks remain an open challenges.

The main contributions of this work are as follows. (i)
proposed greedy-based offloading, which is a type of random
optimization to decide whether to offload vehicular tasks in
on-board units, roadside units (RSU), base stations (BS),
edge/cloud in a mobility-aware environment to optimize the
cost of executing tasks. (ii) to overcome the imbalance in al-
location of resources in mobility vehicular network we propose
an efficient resource allocation based on the availability and
sojourn time of the tasks. (iii) schedule the tasks considering
the deadline to provide less task failure and efficient execution.

II. SYSTEM MODEL

Region A

Region B

Region C

Cloud Server Base Station Road Side Unit

Region D

Fig. 1: A scenario of a city divided into four regions with mul-
tiple vehicle entities to perform multi-task binary offloading
in a collaborative vehicular network.

Our system model in Fig. 1 comprises vehicles, base
stations, roadside units, and cloud as entities for executing
tasks. We consider a city that is divided into four different
regions. Each region has multiple RSUs and a single base
station in a collaborative vehicular network. Cloud servers
are at a large distance and contain large computation power.
In Fig. 2 shows the onboard unit and decision taken by
the vehicle based on the battery power and its computation
capability. The intra-region edge servers contain RSUs and
base stations of the particular region where the vehicle is

already present. The edge controller in the base station makes
the offloading destination decision. Consider a set of vehic-
ular tasks denoted by V = {v1, v2, v3....vx} and task set
T = {t1, t2, t3...tn}. The base station is located in each region
denoted by Nb = {b1, b2, b3, b4}, and they communicate
using wired communication. The RSUs are also the vehicle
entities whose positions are fixed and are deployed as V2I
by providing communication and computational capabilities.
The RSU are denoted by Nr = {r1, r2, .....rm} where m
needs to be atmost 1 to perform multi-task offloading. The
task request ϱ = (xi, yi, In, ψ, ϑ) where xi and yi denotes
the coordinates of the vehicle, In denotes the input task size,
ψ indicates the number of CPU cycles to execute, and ϑ
denotes the maximum tolerable delay required for the task
to execute. Vehicles communicate with RSU, edge controller,
and cloud using wireless communication. Then, a particular
edge controller in each region uses greedy offloading to decide
where to offload based on the availability of resources in
RSUs, BS, and the cloud. The non-orthogonal multiple access
technique provides better transmission and avoids interference
[23]. Since the vehicles are in constant motion, there is
variability in their position. So, the nearest offloading node
to the vehicle is determined using the Euclidean distance and
sojourn time of the vehicle along with the task deadline. The
node that satisfies can be used as an offloaded node to transmit
data.The data transmission rate denoted by R is calculated
using the Shannon capacity formula in Eq. (1)

R = B ∗ log2(1 +
Cg ∗ Tp
Np

) (1)

where B is the bandwidth (Hz), Tp represents the transmission
power of the vehicular task (W), Cg represents the channel
gain of the signal, and Np is the noise power (dBm/Hz).
The vehicular tasks are mobile; therefore, it is challenging
to make the offloading decision compared to static offloading
techniques. We find the Euclidean distance between proxi-
mal vehicular tasks and nearest BS, RSU and edge/cloud as
d(x,y) =

√
(xm − xn)2 + (ym − yn)2 where, xm, xn, ym and

yn are the x and y coordinates of the vehicular task and edge
node. At the same time, we also compute the sojourn time as
S =

RSUrange−d(x,y)

velocity the time to leave for the vehicle from
one edge node to another. where, RSUrange determine the
range of the RSU and velocity represent the velocity of the
vehicle [1]. This helps us determine whether a task can be
successfully executed without interruption.

The total offloading delay is the time taken for uplink
transmission and execution as in Eq. (2)

Od =
In
R

+
In ∗ η
Tremote

(2)

where η represents the input-output ratio and Tremote repre-
sents the computation power of BS, RSU, and cloud allocated
for a particular task. In the case of local execution, the delay
is only the execution of the task given by Eq. (3)

Ld =
In ∗ η
Tlocal

(3)
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Fig. 2: Proposed architecture of deadline based multi-task
offloading in collaborative vehicular-cloud network.

Local energy and offloaded energy are calculated in Eq. (4)
and Eq. (5) as

El = γ ∗ Ld (4)

where γ represents the energy consumed by the vehicle per
CPU revolution and Ld represents the local delay.

Eo = Tremote ∗Od (5)

where Tremote represents the computation power of the of-
floaded node(BS, RSU and cloud) and Od represents the
offloading delay.

III. PROBLEM FORMULATION

For a given vehicular task set Tn, the decision of offloading
is taken based on the cost of execution of the task. The cost is
calculated based on the weighted average of delay and energy.
The delay and energy include the local execution and offloaded
execution. The node with the minimum cost will be selected
as the best node to perform execution. Then, based on the
node offloading, a decision is taken whether to offload or do
local execution. Let us consider a binary indicator variable
π(vi, oj), which denotes whether a given task is assigned to
an offloaded node or not and is given by Eq. (6).

π(vi, oj) =

{
1, if vi is assigned to oj ,
0, otherwise.

(6)

Cn = min
n∈T∑
ti=1

(α ∗max(Ld, Od) + β ∗max(El, Eo)) (7)

The objective function minimizes the cost using weighted
coefficients α and β for considering the weighted average
of latency and energy consumption subject to the following
constraints (C1−C4):
C1: Offloading decision constraint: Each task must be either

processed locally or offloaded to one server: 0 < λi <
1,∀n ∈ T .

C2: Processing Constraint: The total computational demand
(current and new tasks) must not exceed the computa-
tional capacity of edge node j:

∑
ti∈Tj

ψi+ψnew ≤ Cmax
j

C3: Latency constraint: The total latency for the task, in-
cluding transmission time and processing time, should
not exceed the tolerable latency: ϑ: max(Ld, Od) ≤ ϑ.

C4: Energy constraint: The energy consumption for of-
floading, including transmission energy and processing
energy, should not exceed the maximum energy:Emax:
max(Ed, Eo ≤ Emax).

Algorithm 1: Vehicular task offloading with minimum
cost

Input: T : Set of tasks, V : Set of vehicles, Nr : Set of RSUs, Nb:
Set of Base Stations, C: Cloud

Result: mincost
1 Initialize: Tassigned = ∅, Tstatus = {P}, cost = 0;
2 foreach tj ∈ T do
3 if (tj(transmission time) > S) then
4 if (tj < ϑ) then
5 Perform local offloading;
6 Calculate local delay and energy (Eq. (3) and Eq. (4));

7 else
8 bestnode← None;
9 foreach n ∈ (Nr ∪Nb ∪ C) do

10 Calculate the cost of task execution using Eq. (7) ;
11 if (cost(tj , n) < cost(tj , bestnode) and tj < (S, ϑ))

then
12 bestnode← n;
13 mincost← cost(tj , n);

14 Calculate offloading delay and energy (Eq. (5) and Eq. (2));

15 return mincost;

IV. SOLUTION APPROACH

Our proposed algorithm (1) focuses on reducing the system
cost and performing binary offloading in a mobility-based
vehicular network involving four regions in a city. Initially,
the Euclidean distance between the vehicular task and the
proximal node, i.e. (RSU, BS, or cloud) positions are taken
to find the nearest node in the particular region. The Edge
controller in each base station maintains two important status
variables Tassigned and Tstatus to monitor whether the task is
assigned to the local or offloaded node. If the task is offloaded,
the value is assigned to 1; otherwise, 0. If the resources are
busy executing the tasks, they are in the M/M/1 queue. Since
the transmission delay is greater than the queuing delay, it
can be ignored when calculating the total delay. Initially, the
task is ‘Pending’ until the edge controller makes the offloading
decision. The selection of the best node involves the following
steps. Initially, the cost of execution of the task is based on
the current resources, and the node’s computation power is
calculated. In the case of local execution, communication delay
is ignored.

V. EXPERIMENTAL SETUP AND EVALUATION

The weighted average of latency and energy is compared
with the given budget provided it satisfies the latency, com-
munication, processing, and deadline constraints. When the
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(a) Total cost vs. Input tasks
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(b) Delay reduction ratio vs. Input tasks
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(c) Satisfaction ratio vs. Input tasks

Fig. 3: Performance metrics for multi-task offloading in vehicular networks

resources are available, and the tasks are executed, the task
status is updated to ‘In Progress’, and once the tasks are
successfully executed, the task is updated to ‘Success’. This
process repeats until all the tasks are executed. If the task is
interrupted due to a failure in network transmission or not
satisfying deadline constraints, they are ‘Terminated’ from
the queue. Since it is a multi-task offloading, we have used
‘asyncio’ and ‘multiprocessing’ function calls. We consider
each task a thread to execute, sharing the resources at the
edge nodes. Finally, once all the task execution is completed,
irrespective of whether it has been done locally or offloading,
we calculate the task execution cost.

We consider a 2-lane road network with vehicles traversing
the area with a coverage of 4 km, divided into four regions.
Each region will have almost one base station and at least
1 RSU. The cloud server is located at a remote location
of 200 km. The input task size considered is [1,10] MB,
which requires 1 billion cycles per MB for processing. The
computational frequency of the vehicle is [1-2] GHz, and
of BS, RSU is 20 GHz and 10 GHz shared among the
vehicles [24]. The cloud server has a computational power
of 10 GHz per task. The transmission power of the vehicle
task is 2 W. The network bandwidth varies from [5-10] MHz.
The deadline for the task is [5-20] seconds. The vehicles
move at a velocity ranging from 40 km to 90 km. The input-
output ratio is between 0.01 to 0.5. The entire simulation
is performed using Python IDE. The proposed algorithm is
compared with other baseline algorithms, such as random
offloading and local execution. In random offloading, the tasks
are randomly allocated based on the resources available in the
four regions. No constraint regarding resources available or
latency constraints is taken into consideration, whereas in local
offloading, all the tasks are executed in the onboard unit. We
compare the proposed algorithm with the following evaluation
metrics.

• Total cost: Fig. 3a compares the total system cost of the
vehicular tasks with an increase in input tasks. The greedy
offloading decision in the proposed work always tries to
allocate to the best optimal node, decreasing the system
cost by around 60.44%. The offloading decision is based
on the computing capabilities of the task along with the
deadline and sojourn time. In the case of local execution,

low computation power takes more time, which increases
the cost, and in random offloading, the cost varies since
it is allocated randomly.

• Delay reduction ratio: Fig. 3b visualizes the delay reduc-
tion ratio with increased tasks. The delay reduction ratio
is the total delay reduction to the total local execution.
As the size of the tasks is less, the server or edge device
is underutilized, allowing quick processing of offloaded
tasks. This results in a significant reduction in delay of
around 53.43% compared to local execution. However,
there is a slight decrease in the ratio as the task demand
increases along with network transmission and server
processing delays. In case of random offloading it is
difficult to predict the delay reduction ratio due to its
unpredictable behavior in allocation of resources.

• Satisfaction Ratio: Fig. 3c provides the satisfaction
ratio where the user’s performance requirements are
met according to the given constraints in the objective
function. It is measured as the total number of tasks
completed during the execution to the total number of
tasks participated in the offloading process. In the case
of random offloading, some tasks might get successfully
executed due to their random behavior. In contrast, in
local offloading, only such tasks are executed for the tasks
that can satisfy OBUs’ computational power.

VI. CONCLUSION AND FUTURE WORK

The increasing demands of latency-sensitive applications
in vehicular networks highlight the critical need for fast,
reliable task execution amidst challenges like limited onboard
resources and high mobility. To address this, our work focuses
on optimize node selection using a greedy-based offloading
strategy to provide cost-efficient multi-task offloading by
leveraging the edge server. The numerical finding reveals
that the proposed algorithm reduces the total system cost,
delay reduction ratio by 60.44%, 53.43% and improves the
satisfaction ratio by 36% to minimize the total system cost
and provide better QoS and QoE.
In the future, we aim to extend our work for load balancing
to provide efficient adaptive and scalable solutions for next-
generation vehicular systems.
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